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Abstract

Perhaps, this paper reports the ®rst successful applications of the topology optimization in the design of (thin-
walled) beam sections. In particular, topologically di�erent thin-walled beam cross sections can be obtained by the
present approach, which is very useful in identifying the direction and location of sti�eners. In formulating the

topology optimization problems, a simple power law is used for the relation between the density of an element with
a hole and the mechanical properties of the element. The sensitivity of the torsional rigidity is obtained by
developing a ®nite element model of a St. Venant torsion problem, and the Euler beam theory is used for the
sensitivity analysis of the bending rigidities. # 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The beam cross section optimization problems have been very important as beams are widely used as
e�cient load-carrying structural members. Earlier investigations were based on analytic approaches
(Banichuk, 1976; Banichuk and Karihaloo, 1976; Parbery and Karihaloo, 1977), but the optimization
problems in more complicated geometries need to be solved numerically.

The section shape optimization based on the ®nite element formulation was carried out by Dems
(1980) and Na et al. (1983). As a more e�cient alternative method for section shape optimization, Mota
Soares et al. (1984) and Gracia and Doblare (1988) used the boundary element method. Schramm and
Pilkey (1993) developed a shape optimization technique using direct integration and B-splines. More
literature on section optimization problems can be found in the references cited above. However, the
aforementioned techniques are not applicable in obtaining (thin-walled) beam cross sections that are
topologically di�erent from original cross sections.
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One important problem in beam section design is to ®nd the location and direction of sti�eners,
particularly in thin-walled beams. As the introduction of a sti�ener in a closed beam may result in a
topologically di�erent cross section from the original cross section, the existing section shape
optimization cannot be used. The purpose of this paper is to formulate a section topology optimization
technique and apply it to various practical problems. In this work, the objective function is taken as a
weighted sum of bending and torsional rigidities and a topology optimization technique is proposed to
®nd the optimal cross section con®guration.

The material homogenization concept (Bendsùe and Kikuchi (1988)) has been introduced to overcome
the ill-posedness of optimal material layout problems. With this approach which converts the
optimization problems into sizing optimization problems, the optimal material layout problems can be
fairly relaxed. The present topology optimization technique is based on the technique and formulation
developed for elastic bodies, not directly for beam structures (Bendsùe and Kikuchi, 1988; Guedes and
Kikuchi, 1990; Suzuki and Kikuchi, 1991; Olho� et al., 1991; Jog et al., 1994). A complete treatment of
this subject and a number of related references can be found in Bendsùe (1995). In this optimization
problem setting, the density of each element may be used as the design variable. A brief summary of the
topology optimization that is necessary for the present analysis will be given in the next section.

The beam bending rigidity appearing in the objective function is based on the classical beam theory.
The torsional rigidity is calculated by the ®nite element analysis of the St. Venant torsion problem for
which the Prandtl stress function formulation is employed. To simplify the form of the objective
function, an inequality relation stating that the torsional rigidity is always smaller than the mean
bending rigidity is derived. The expression for the sensitivity of the torsional rigidity with respect to the
design variable is explicitly obtained. Several cross sections including some practical ones are
investigated as numerical examples. In particular, the direction and the location of a sti�ener in a thin-
walled closed beam section can be determined by applying the present topology optimization technique.
The successful applications in this class of problems may be a major contribution of the present work.

2. Review of topology optimization using material density

In this section, a brief review of the topology optimization method using the material density as the
design variable will be given. Fig. 1 illustrates an overview for a simple version of the topology
optimization procedure. The design domain is uniformly discretized by ®nite elements having internal
holes. The size of the hole governs the element or cell density and thus the homogenized mechanical

Fig. 1. Overview of the topology optimization procedure.
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properties of the element. The density r appearing in Fig. 1 is de®ned as

r � 1ÿ
�
b

a

�2

, �1�

where a and b are the side lengths of the square element and hole, respectively.
In the homogenization-based topology optimization approach, the optimal element density

distribution is obtained ®rst. Then the obtained result is postprocessed to determine the optimal
con®guration for the given problem. Depending on the value of the element density, the element is
regarded either full or void.

The rigorous homogenization technique (see e.g., Guedes and Kikuchi, 1990 and Bendsùe, 1995) can
be used to ®nd the relation between the density r and the material properties. However, a simple
arti®cial relation between the density and the material properties can be also used in the topology
optimization problems. Furthermore, it is assumed in this work that only Young's modulus E varies as
the function of the density as

E � E�r� � E0rn �n � 2�, 0<rR1, �2�
where E0 is the Young's modulus of the material of the original element without any hole. Poisson's
ratio n and the area A are assumed to be independent of the density r. Therefore only the element
sti�ness changes as the hole size varies. For more rigorous treatments of this subject, see Bendsùe
(1995). Fig. 2 illustrates graphically the present assumptions used in relating the density and the
mechanical and geometrical properties.

The material and geometrical properties expressed as the functions of the element density will be used
in determining the bending and torsional sti�ness of a beam. The following sections derive the
expressions for the bending and torsional rigidities that are needed for the topology optimization of
beam cross sections.

3. Bending and torsional rigidities

Fig. 3 shows the general cross section of a beam along with a discretized model of it. The beam is
subject to bending and twisting moments. The positive moment directions and the coordinate systems
are also shown.

The bending rigidities, Dx, Dy and Dxy, may be found from the Euler±Bernouilli beam theory:

Dx �
�
A

Ey2 dA, Dy �
�
A

Ex 2 dA and Dxy �
�
A

Exy dA: �3�

In Eq. (3), the Cartesian coordinate system (x, y ) that has its origin at a centroid is de®ned as

x � Xÿ Xc and y � Yÿ Yc, �4�
where (X, Y ) is an arbitrarily located Cartesian coordinate system and Xc and Yc are de®ned as

Xc �

�
A

EX dA�
A

E dA

and Yc �

�
A

EY dA�
A

E dA

: �5�

Y.Y. Kim, T.S. Kim / International Journal of Solids and Structures 37 (2000) 477±493 479



The bending moments (MX, MY ) and the curvatures (kx, ky ) are related as�
Mx

My

�
�
�
Dx Dxy

Dxy Dy

��
kx
ky

�
: �6�

To carry out the topology optimization, we consider the beam cross section discretized with two-
dimensional ®nite elements. Consequently, Eq. (3) must be rewritten as

Dx �
XNe

e�1
E

�
Ae

y2 dA, Dy �
XNe

e�1
E

�
Ae

x2 dA and Dxy �
XNe

e�1
E

�
Ae

xy dA, �7�

where Young's modulus E is now regarded as the function of the element density re as in Eq. (2). The
location of the centroid is rewritten as

Fig. 2. The variation of the mechanical and geometrical properties as the function of the element density r: (a) r: Density of el-

ement; (b) E: Young's modulus; (c) n: Poisson's ratio; (d) A(V ): Geometric area (volume).
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Xc �

XNe

e�1
E

�
Ae

X dA

XNe

e�1
E

�
Ae

dA

and Yc �

XNe

e�1
E

�
Ae

Y dA

XNe

e�1
E

�
Ae

dA

, �8�

where Ne is the total number of ®nite elements used to discretize the design domain.
Once the bending rigidities Dx, Dy and Dxy are determined, it is straightforward to ®nd the maximum

and minimum bending rigidities along the principal axes (Crandall et al., 1978):

Dmax � Dmean � RM and Dmin � Dmean ÿ RM, �9�
where Dmean is the mean bending rigidity de®ned as

Dmean � Dx �Dy

2
�10�

and RM is given by

RM �
��������������������������������
Dx �Dy

2
�D2

xy

r
: �11�

Unlike the bending rigidity, the torsional rigidity for general cross sections must be obtained by
solving a two-dimensional boundary value problem (see Timoshenko and Goodier, 1970; Sokolniko�,
1955). The torsion problem may be formulated in terms of either the warping function or the Prandtl
stress function, but the ®nite element analysis based on the Prandtl stress function formulation will be
employed here as it gives a simpler expression for the torsional rigidity. Recent references on the
solution of torsion problems may be found in Kim and Yoon (1997).

Fig. 3. (a) A beam under bending and torsional moment; (b) A discretized model of the cross section.
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In the Prandtl stress formulation, the shear stress components are expressed as the derivatives of the
stress function f(x,y ):

szx � @f�x,y�
@y

and szy � @f�x,y�
@x

, �12�

where the stress function f(x,y ) must satisfy the following di�erential equation

@

@x

�
1

G

@f
@x

�
� @

@y

�
1

G

@f
@y

�
� ÿ2y: �13�

In Eq. (13), y is the twist rate and G(x, y ) is the shear modulus. The traction-free beam wall
condition along the boundary curve C may be given in terms of f:

df
ds
� 0 or f � constant �0 for simply connected regions�: �14�

Once the solution to the stress function is found, the torsional rigidity is determined as (for simply
connected regions)

Dz �Mz � 2

�
A

f dA with y � 1: �15�

The weak form of the Prandtl stress function formulation may be written as�
A

1

G
ru � rf dA � 2y

�
A

u dA, �16�

where u is an arbitrary function which lies in the admissible space (u=0 on C ). For the ®nite element
analysis, the stress function f is discretized, which may be written as

f � NF: �17�
In Eq. (17), N is the displacement interpolation matrix and FF represents the column vector consisting

of the nodal values of the stress function.
If a symbol B is introduced to designate the corresponding strain interpolation matrix, one can use

Eq. (16) to obtain the following system of equations in the element level:

KeFFFe � fe, �18�

where the element sti�ness matrix Ke and the load vector fe are

Ke �
�
Ae

BT
e DeBe dA �19�

and

fe � 2y
�
Ae

NT
e dA: �20�

In Eq. (19), De is the matrix de®ning the constitutive relation
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De �

2664
1

G
0

0
1

G

3775: �21�

As for Young's modulus, the shear modulus is assumed to vary as

G � G�re� � G0rne �
E0

1�1� n�r
n
e �n � 2�: �22�

Assembling Eq. (18) yields the ®nal system equation:

KFFF � f, �23�
where

K �
XNe

e�1
Ke, �24a�

FFF �
XNe

e�1
FFFe �24b�

and

f �
XNe

e�1
fe: �24c�

The torsional rigidity Dz is now given by

Dz � 2
XNe

e�1

�
Ae

NeFFFe dA � 2
XNe

e�1

�
Ae

Ne dA
XNe

e�1
FFFe: �25�

Using Eqs. (24b) and (24c), the ®nal expression for Dz is obtained as

Dz � fTFFF with y � 1: �26�

4. Optimization problem formulation

4.1. Objective function

In most beam section design problems, larger bending and torsional rigidities for a given mass
constraint are desired. Unless speci®c values for the rigidities are speci®ed, the minimization of RM (half
of the di�erence between the maximum and minimum principal values) and the maximization of Dmean

(the mean value of the two principal values) may be sought for (see Eq. (9)). At the same time, the
torsional rigidity Dz needs to be maximized.

Taking the element densities as the design variables, the objective function to minimize may be written
as
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f � ÿwJDz ÿ wMDmean � wIRM � cp

XNe

e�1
re�1ÿ re� �27�

and

0<reR1, e � 1,2 . . . ,Ne, �28�
where the w's represent weighting factors and the last term in Eq. (27) is a penalty function with a
penalty constant cp. Since the optimal shape of a cross section is extracted by the density distribution, it
is always desirable to push the design variables towards the lower and upper limits 0 and 1 using the
penalty function.

Instead of using Eq. (27) as the objective function, we propose to use a simpler function for the
minimization problem:

f � ÿwJDz � wIRM � cp

XNe

e�1
re�1ÿ re�: �29�

The use of this function is justi®ed because there exists an inequality relation between the mean
bending rigidity Dmean and the torsional rigidity Dz such that

Dmean > Dz for n > 0: �30�
The proof of Eq. (30) is given in Appendix A.

4.2. Constraint

A typical constraint in structure optimization problems is a mass constraint. If the maximum
allowable mass is denoted by M0, the constraint equation is written simply as

XNe

e�1

�
Ae

re dAÿM0R0: �31�

4.3. Sensitivity analysis

The sensitivities of the object function and the constraint equation need to be calculated during the
optimization process. Therefore, the formula needed for the sensitivity calculations are derived explicitly
below.

The sensitivity of the objective function in Eq. (29) with respect to the design variable re is simply

@f

@re

� ÿwJ
@Dz

@re

� wI
@RM

@re

� cp�1ÿ 2re�: �32�

The sensitivity of the quantity RM in Eq. (32) is given by utilizing Eq. (11).

@RM

@re

�

�
�Dx ÿDy�

�
@Dx

@re

ÿ @Dy

@re

�
� 4Dxy

@Dxy

@re

�
2
���������������������������������������
�Dx ÿDy�2 � 4D2

xy

q , �33�
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where the sensitivity of the bending rigidities can be obtained by utilizing the de®nitions given in Eq.
(7):

@Dx

@re

� E 0
�
Ae

y2 dA�
XNe

e�1
E

�
Ae

2y
@y

@re

dA,

@Dy

@re

� E 0
�
Ae

x2 dA�
XNe

e�1
E

�
Ae

2x
@x

@re

dA

and

@Dxy

@re

� E 0
�
Ae

xy dA�
XNe

e�1
E

�
Ae

�
x
@y

@re

� y
@x

@re

�
dA: �34�

In Eq. (34), ( ) ' denotes di�erentiation with respect to re. The sensitivities of x and y should not be
neglected in Eq. (34). Using Eqs. (4) and (8),

@x

@re

� ÿ@Xc

@re

�
E 0
�
Ae

dA
XNe

e�1
E

�
Ae

X dAÿ E 0
�
Ae

X dA
XNe

e�1
E

�
Ae

dA XNe

e�1
E

�
Ae

dA

!2

and

@y

@re

� ÿ@Yc

@re

�
E 0
�
Ae

dA
XNe

e�1
E

�
Ae

Y dAÿ E 0
�
Ae

Y dA
XNe

e�1
E

�
Ae

dA XNe

e�1
E

�
Ae

dA

!2
: �35�

The sensitivity of the torsional rigidity in Eq. (32) can be found by utilizing Eq. (26).

@Dz

@re

� @ �fTFFF�
@re

� fT
@FFF
@re

� FFFTK
@FFF
@re

: �36�

To simplify Eq. (36), Eq. (23) is di�erentiated with respect to the design variable and premultiplied by
FFT:

FFFTK
@FFF
@re

� ÿFFFT @K

@re

FFF: �37�

Substituting Eq. (37) into Eq. (36) yields

@Dz

@re

� ÿFFFT @K

@re

FFF � ÿFFFT
e

@Ke

@re

FFFe � G 0

G
FFFT

e KeFFFe: �38�

Note that the sensitivity of the torsional rigidity with respect to the density of the e-th ®nite element
can be computed within the element level.
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The sensitivity of the constraint in Eq. (31) is straightforward to obtain:

@

@re

 XNe

e�1

�
Ae

re dAÿM0

!
� @

@re

�
Ae

re dA �
�
Ae

dA: �39�

From the result given by Eq. (39), the sensitivity of the constraint equation with respect to the density
of the e-th element is nothing but the element area.

For the numerical analysis of the present optimization problem, the method of feasible direction (see
Haftka and GuÈ rdal, 1992 and Vanderplaats, 1984a) is used. (ADS (Vanderplaats, 1984b) is used for the
actual numerical work). The values of the design variables are updated utilizing the sensitivity results
given above. When converging results are obtained, the design variables take on the values close to the
limit values. This is due to the penalty term added in the de®nition of the objective function.
Subsequently, clearly identi®able section shapes may be obtained.

5. Numerical examples

As the application examples of the present topology optimization in the beam section design, we
consider three cases. The ®rst one is a simple case in which a section bounded by a square pro®le is to
be optimized. (For all the optimization problems discussed in this section, the objective function f in Eq.
(29) will be minimized). This case serves to check the validity of the present analysis. The second case
deals with the reinforcement of a thin-walled cross section, and the resulting reinforced cross section has
the same topology as the original one. The third case also deals with thin-walled beam section
reinforcement, but the resulting cross sections can be topologically di�erent from the original one. This
is the case that most other optimization techniques including the shape optimization technique cannot
handle. Perhaps, this is the example for which the present topology optimization contributes in a unique
way to the thin-walled beam section design in comparison with existing approaches.

5.1. Veri®cation problem

To verify the validity of the present method, a simple design optimization problem is considered. Fig.
4 shows the domain for the section design. The problem is to ®nd the section shape to minimize the
function f in Eq. (29) subject to di�erent mass constraints. In this case, we take wJ=1 and wI=0 as
symmetric cross sections will be sought for. The optimal section con®gurations obtained from the
present analysis are shown in Fig. 5.

As expected, the strict limitation on the total mass yields a thin-walled section close to a hollow
circular cross section. To obtain the con®guration shown in Fig. 5, the initial design variables are taken
to be constant with re=0.1. During the iterations of the design optimization, the design variables are
pushed towards to the values close to either 0 or 1.

5.2. Thin-walled section reinforcement: resulting in variable beam thickness

As the second case, the problem of the reinforcement of a thin-walled beam section is considered. The
thin-walled beam section is shown in Fig. 6. The goal is to ®nd a cross section with the maximum
rigidity subject to a mass constraint. Two results obtained from the present topology optimization
technique are shown in Fig. 7. The mass constraint ratio is set equal to 20% of the design domain.
Depending on the values of the weighting factors, somewhat di�erently reinforced beam sections are
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Fig. 4. Section design domain (dimensionless units are used for convenience).

Fig. 5. Optimized cross sections: (a) 30% mass constraint; (b) 50% mass constraint; (c) 60% mass constraint.

Fig. 6. The design domain for a thin-walled cross section.
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obtained. The convergence history is shown in Fig. 8, and the ®nal values of the bending and torsional
rigidities listed in Table 1 show the sectional characteristics of the optimized sections.

From the optimized section shapes shown in Fig. 7, one may estimate the optimal distribution of the
cross section wall thickness. The present observation is not only interesting but also very useful in a
wide class of thin-walled beam section design problems. As shall be seen in the next example, the
topology optimization technique also gives a reinforced beam section that is topologically di�erent from
the original section. Therefore, a uni®ed treatment of (thin-walled) section design may be carried out
within the same frame of the section topology optimization.

Fig. 7. Optimized cross sections (20% mass constraint): (a) wJ=1.0 and wI=0.0; (b) wJ=1.0 and wI=0.02.

Fig. 8. Convergence history for the results shown in Fig. 7: (a) wJ=1.0 and wI=0.0; (b) wJ=1.0 and wI=0.02.
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5.3. Thin-walled section reinforcement: resulting in di�erent topology

There are some instances in which the external pro®le of a thin-walled beam cross section cannot be
changed although the section rigidity needs to be increased. For instance, when a beam needs to be
assembled to other structural elements which are already manufactured or whose pro®les are di�cult to
change, the beam section pro®le may not be changed, either. In this case, only sti�ening inside the beam
cross section may be allowed.

As a speci®c example, we consider a section shown in Fig. 9 where the beam pro®le marked by thick
solid lines is assumed not be altered because of its assembly requirement with adjacent structural
components. The goal of this problem is to ®nd the optimal location and direction of a sti�ener in the
design domain that lies inside the cross section pro®le.

To ®nd the optimal location and direction of a sti�ener, we apply the topology optimization
technique formulated in the previous section. Two sets of weighting factors are considered with the 40%
mass constraint. The section shapes obtained from the present analysis are shown in Fig. 10. The
convergence history is also shown in Fig. 11. Table 2 compares the sectional rigidities of the initial
section having a uniform density distribution with those of the ®nal optimal cross section. The optimal
location and the direction of a sti�ener can be identi®ed from the optimal shape shown in Fig. 10. This
indeed demonstrates the usefulness of the present topology optimization technique in the thin-walled
beam section sti�ener design. Without this approach, optimal sti�ening con®gurations would be di�cult
to ®nd.

In topology optimization, utilizing the arti®cial material density model as used in this work, the
solution usually depends on the mesh-size. However, the present problems are insensitive to meshing
size: compare Fig. 10(a) and Fig. 12. The result shown in Fig. 12 is obtained with the half size of the
original mesh shown in Fig. 10(a). The solution insensitiveness to mesh-size in this problem is partly
because of the use of the penalty function introduced in the objective function.

Table 1

Change of the cross section rigidities (E = 13 kN mmÿ2, n=0.3)

20% constraint

wJ=1.0 and wI=0.0 wJ=1.0 and wI=0.02

Initial Final Initial Final

Dz (kN mmÿ2) 2910.4 4488.4 2910.4 3805.2

Dmin (kN mmÿ2) 4963.1 8327.7 4963.1 10074

Dmax (kN mmÿ2) 8308.6 14870 8308.6 10095

Fig. 9. Initial design domain with a geometric constraint.
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We have also considered the case with a tighter mass constraint, namely a 25% mass constraint. The
results are depicted in Fig. 13, but they appear somewhat impractical. However, it is worth noting that
the candidate location and direction of an optimal sti�ener may be predicted quite well even with these
results.

6. Conclusions

A new topology optimization technique of beam cross sections is proposed in this paper. It is
demonstrated that a uni®ed treatment of optimal section pro®le design, wall-thickness distribution and
section topology con®guration can be achieved using the present technique. Among others, optimal

Fig. 10. Optimized cross sections (40% mass constraint): (a) wJ=1.0 and wI=0.0; (b) wJ=1.0 and wI=0.4.

Fig. 11. Convergence history for the results shown in Fig. 10: (a) wJ=1.0 and wI=0.0; (b) wJ=1.0 and wI=0.4.
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Fig. 12. Optimized cross section with the half size of the original mesh used for Fig. 10(a).

Fig. 13. Optimized cross sections (25% mass constraint): (a) wJ=1.0 and wI=0.0; (b) wJ=1.0 and wI=0.4.

Table 2

Cross sectional rigidities before and after optimization; The results before optimization are those obtained from the sections with

uniform density distribution (E = 13 kN mmÿ2, n=0.3)

40% constraint

wJ=1.0 and wI=0.0 wJ=1.0 and wI=0.4

Initial Final Initial Final

Dz (kN mmÿ2) 86.385 3318.8 86.385 3189.5

Dmin (kN mmÿ2) 198.87 6139.8 198.87 6357.6

Dmax (kN mmÿ2) 360.62 9831.7 360.62 7900.6
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sti�ening direction and location in thin-walled section can be found with the present approach; this
would be di�cult to achieve with any other existing approaches.
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Appendix A

In order to prove Eq. (30), it is convenient to formulate the torsion problem in terms of the warping
function c that satis®es the following equation and boundary condition:

@

@x

�
G

�
@c
@x
ÿ y

��
� @

@y

�
G

�
@c
@y
� x

��
� 0, �A1�

�
@c
@x

y

�
dy

ds
ÿ
�
@c
@y
� x

�
dx

ds
� 0 or

dc
dn
� ynx ÿ xny on C: �A2�

In terms of the warping function c, the torsional rigidity can be written as (see Timoshenko and
Goodier, 1970 or Sokolniko�, 1955)
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Now applying the divergence theorem to the integral involving c in Eq. (A3) and using Eq. (A2) gives
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Reapplying the divergence theorem to the last integral in Eq. (A4) and then substituting Eq. (A1)
yields the following result:
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The mean bending rigidity Dmean can be explicitly written when Eqs. (7) and (10) and the relation
E= 2E/(1+n ) are utilized:
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It is then straightforward to show Eq. (30) from the following result:
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